This Protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following Protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Progenitor cell therapy describes the use of multipotent cells of various cell lineages (autologous or allogeneic) for tissue repair and/or regeneration. Progenitor cell therapy is being investigated for the treatment of damaged myocardium resulting from acute or chronic cardiac ischemia and for refractory angina.

Summary of Evidence

Progenitor cell therapy has been tested in patients with acute ischemia, chronic ischemia, and refractory angina. For all these conditions, there is a similar pattern of outcomes, with modest improvements demonstrated on physiologic outcomes, but limited impacts on clinical outcomes. For acute ischemic heart disease, limited evidence on clinical outcomes suggests that there may be benefits in improving left ventricular ejection fraction, reducing recurrent myocardial infarction, decreasing the need for further revascularization, and perhaps even decreasing mortality, although a recent, large, individual patient data meta-analysis reported no improvement in these outcomes. For chronic ischemic heart disease, only a handful of clinical outcome events have been reported across the included studies, too few for meaningful analysis. For refractory angina, evidence from a phase 2 randomized controlled trial that examined two doses of mononuclear cells compared with placebo reported that functional outcomes such as angina frequency and exercise tolerance showed modest improvements with the lower dose of mononuclear cells.

Progenitor cell therapy for the treatment of damaged and ischemic myocardium is a rapidly evolving field, with several areas of uncertainty, including patient selection, cell type, and procedural details (e.g., timing and mode of delivery). Accumulating evidence on this therapy suggests that progenitor cell therapy may be a promising intervention but that ultimate effects on health outcomes are still uncertain. Clinical significance of improvements in physiologic parameters has yet to be demonstrated, and there is very little evidence demonstrating benefit in clinical outcome. Moreover, evidence remains primarily limited to short-term effects; although one meta-analysis reported durable (one year or more) improvements in congestive heart failure classification, this result requires replication, and other durable improvements in clinical outcomes (death, hospitalizations for heart failure) were based on low-quality evidence. Therefore, progenitor (stem) cell therapy for the treatment of damaged or ischemic myocardium is considered investigational.
Policy

Progenitor cell therapy, including but not limited to skeletal myoblasts or hematopoietic stem cells, is considered investigational as a treatment of damaged myocardium.

Infusion of growth factors (i.e., granulocyte colony stimulating factor [GCSF]) is considered investigational as a technique to increase the numbers of circulating hematopoietic stem cells as treatment of damaged myocardium.

Background

Ischemia is the most common cause of cardiovascular disease and myocardial damage in the developed world. Despite impressive advances in treatment, ischemic heart disease is still associated with high morbidity and mortality. Current treatments for ischemic heart disease seek to revascularize occluded arteries, optimize pump function, and prevent future myocardial damage. However, current treatments are unable to reverse existing heart muscle damage.\(^1\,^2\) Treatment with progenitor cells (i.e., stem cells) offers potential benefits beyond those of standard medical care, including the potential for repair and/or regeneration of damaged myocardium. Potential sources of embryonic and adult donor cells include skeletal myoblasts, bone marrow cells, circulating blood-derived progenitor cells, endometrial mesenchymal stem cells (MSCs), adult testis pluripotent stem cells, mesothelial cells, adipose-derived stromal cells, embryonic cells, induced pluripotent stem cells, and bone marrow MSCs, all of which are able to differentiate into cardiomyocytes and vascular endothelial cells.

The mechanism of benefit after treatment with progenitor cells is not entirely understood. Differentiation of progenitor cells into mature myocytes and engraftment of progenitor cells into areas of damaged myocardium has been suggested in animal studies using tagged progenitor cells. However, there is controversy concerning whether injected progenitor cells actually engraft and differentiate into mature myocytes in humans to a degree that might result in clinical benefit. It also has been proposed that progenitor cells may improve perfusion to areas of ischemic myocardium. Basic science research also suggests that injected stem cells secrete cytokines with antiapoptotic and proangiogenesis properties. Clinical benefit may result if these paracrine factors limit cell death from ischemia or stimulate recovery. For example, myocardial protection can occur through modulation of inflammatory and fibrogenic processes. Alternatively, paracrine factors may affect intrinsic repair mechanisms of the heart through neovascularization, cardiac metabolism and contractility, increase in cardiomyocyte proliferation, or activation of resident stem and progenitor cells. The relative importance of these proposed paracrine actions depends on the age of the infarct (e.g., cytoprotective effects in acute ischemia and cell proliferation in chronic ischemia). Investigation of the specific factors induced by administration of progenitor cells is ongoing.

There also are a variety of potential delivery mechanisms for donor cells, encompassing a wide range of invasiveness. Donor cells can be delivered via thoracotomy and direct injection into areas of damaged myocardium. Injection of progenitor cells into the coronary circulation also is done using percutaneous, catheter-based techniques. Finally, progenitor cells may be delivered intravenously via a peripheral vein. With this approach, the cells must be able to target damaged myocardium and concentrate at the site of myocardial damage.

Adverse effects of progenitor cell treatment include risks of the delivery procedure (e.g., thoracotomy, percutaneous catheter-based) and risks of the donor cells themselves. Donor progenitor cells can differentiate into fibroblasts rather than myocytes. This may create a substrate for malignant ventricular arrhythmias. There also is a theoretical risk that tumors, such as teratomas, can arise from progenitor cells, but the actual risk in humans is currently unknown.
Regulatory Status

U.S. Food and Drug Administration (FDA) marketing clearance is not required when autologous cells are processed on site with existing laboratory procedures and injected with existing catheter devices. However, there are several products that require FDA approval. MyoCell® (Bioheart Inc., Sunrise, FL) comprises patient autologous skeletal myoblasts that are expanded ex vivo and supplied as a cell suspension in a buffered salt solution for injection into the area of damaged myocardium. MyoCell SDF-1 (Bioheart) is similar to MyoCell®, but before injection, myoblast cells are genetically modified to release excess stromal-derived factor-1 (SDF-1). Increased SDF-1 levels at the site of myocardial damage may accelerate recruitment of native stem cells to increase tissue repair and neovascularization. For both products, myoblast isolation and expansion occur at a single reference laboratory (Bioheart); both products are therefore subject to FDA approval. Currently, neither product is FDA-cleared. Implantation may require use of a unique catheter delivery system, MyoCath (Bioheart), that is FDA-cleared.

An allogeneic human mesenchymal stem cell (hMSC) product (Prochymal®) is being developed by Osiris Therapeutics (Baltimore, MD) for treatment of acute myocardial infarction (AMI). Prochymal® (also referred to as Provacel®) is a highly purified preparation of ex vivo cultured adult hMSCs isolated from the bone marrow of healthy young adult donors. Prochymal® has been granted “fast track” status by the FDA for Crohn disease and graft-versus-host disease (GVHD), and has orphan drug status for GVHD from FDA and the European Medicines Agency. Prochymal® is being studied in phase 2 trials for the treatment of AMI, pulmonary disease, and type 1 diabetes.

MultiStem® (Athersys) is an allogeneic bone marrow‒derived adherent adult stem cell product. MultiStem® has received orphan drug status from FDA for GVHD and has received authorization from FDA for a phase 2 trial for treatment of AMI with an adventitial delivery system.

Related Protocols

Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

Stem Cell Therapy for Peripheral Arterial Disease

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.


4. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Progenitor cell therapy for treatment of myocardial damage due to ischemia. TEC Assessments. 2008; Volume 23, Tab 4. PMID


